Implementation of Association Rule Mining for Bridge Datasets Using Weka

¹Dr. M. Thangamani & ²Ms.V.Prasanna

¹Assistant Professor, Kongu Engineering College, India ²Research Scholar, Kongu Engineering College, India

Abstract: Data mining playing vital information in extracting useful information from large amount of data set. Apriori algorithm generate useful rule by finding frequent itemset from huge data set. In this paper can apply the Apriori Algorithm to generate rules for the given data set (bridge) using Waikato Environment for Knowledge Analysis tool. Bridge dataset is taken from UCI machine learning repository. These articles explore and visualize the apriori technique in data mining concept.

Keywords: Data mining, Apriori technicque, UCI machine

1. INTRODUCTION

The data mining represents mining the knowledge from large data. Topics such as knowledge discovery, query language, decision tree induction, classification and prediction, cluster analysis, and how to mine the Web are functions of data mining. Manual analyses are time consuming in the real world. In this situation, WEKA can use for automating the task.

Weka is a collection of machine learning algorithms for data mining tasks. Classification was performed using WEKA in data mining research. WEKA is a data mining workbench that allows comparison between many different machine learning algorithms. In addition, it also has functionality for feature selection, data pre-processing and data visualization [1]. The algorithms can either be applied directly to a dataset or called from Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules and visualization. Well-suited for developing new machine learning schemes. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

2. RELATED WORK

The more associations between accident factors and accident severity were illustrated when applying Apriori algorithm [2]. The predictive Apriori algorithm could derive more number of rules that could be useful when studying the effect of each individual factor to accident severity. These results can help the decision makers in the traffic accident department to take actions based on various hidden patterns from the data. The swarm based techniques to extract association rules for student performance prediction as a multi-objective classification problem is analysis by [3]. In this algorithm takes a low convergence time and it used a few number of parameters. Honeybee Colony Optimization and Particle Swarm Optimization are the

two used metaheuristics to extract association rules. These are used in this investigation and WEKA, Rapidminer and KEEL tools are used for comparing the technique. Various type of analysis is carried out using association rules [4-6] in data mining through WEKA environments.

3. EXPERIMENTS DESIGN

Implementation of Association Rule Mining is carried out in Bridge datasets using Weka tool.

3.1 Dataset description

Association rule works only with nominal type and the data values are discrete in nature. Data set Characteristics: Multivariate Number of Instances:108 Number of Attributes: 13 Attribute Characteristics: Categorical, Integer

3.2 Attributes description

Table.1 shows the list of attributes in bridge dataset. It also represents the data type for each attributes. Bridge datasets attributes are viewed by viewer in the WEKA explorer panel. It is illustrated in Fig. 1

Attribute	Possible Values	Data type
Id		Nominal
River	A,M,O	Nominal
Location	1 to 52	Numeric
Erected	1818-1986; Crafts, Emerging, Mature, Modern	Numeric
Purpose	Walk, Aqueduct, RR, Highway	Nominal
Length	804-4558; Short, Medium, Long	Numeric
Lanes	1,2,4,6	Numeric
Clear-G	N, G	Nominal
T-OR-D	Through, Deck	Nominal
Material	Wood Iron, Steel	Nominal
Span	Short, Medium, Steel	Nominal
REL-L	S, S-F, F	Nominal
Туре	Wood, Suspen, Simple-T, Arch, Cantilev, Cont-T	Nominal

Table.1 List of attributes

Destruction Destruction <thdest< th=""><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Viewer</th><th></th><th></th><th></th><th></th><th></th><th></th><th>x</th><th>orer</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>ð ×</th></thdest<>	4							Viewer							x	orer						-	ð ×
No. Dot Dot <thdot< th=""> <thdot< <="" th=""><th>Relati</th><th>on: brida</th><th>es</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thdot<></thdot<>	Relati	on: brida	es													1							
Normal Normal Nume	No.	ID	River	Location	Erected	Purpose	Lenath	Lanes	Clear-G	T-OR-D	Material	Span	Rel-L	Type									
2 2 k 250 1850-HGWML 1070 2001 PAOL PAO																	Und	do		Edit		Save	
3 2 A 39 1839.04/QED. 1.01/v PAO WOOD 5 WOO	1	E1	М	3.0	1818.0	HIGHW		2.0	N	THRO	WOOD	SHORT	S	WOOD									
4 ES A 200 B37.0HGWL. Duo. 2.0H Theo WOOD S S M 3 B B A 28.0 B A 28.0 HBO MOOD S WOOD S S S	2	E2	A	25.0	1819.0	HIGHW	1037.0	2.0	N	THRO	WOOD	SHORT	S	WOOD									
5 5 M 220 1930, (нрсни: 200, 1930, (нрсни: 200, 100, 100, 100, 100, 100, 100, 100,	3	E3	A	39.0	1829.0	AQUED		1.0	N	THRO	WOOD		S	WOOD	1								Apply
b c	1	E5	A	29.0	1837.0	HIGHW	1000.0	2.0	N	THRO	WOOD	SHORT	S	WOOD	1								
p p	i	E6	М	23.0	1838.0	HIGHW		2.0	N	THRO	WOOD		S	WOOD	1								
1 100	5	E7	Α	27.0	1840.0	HIGHW	990.0	2.0	N	THRO	WOOD	MEDIUM	S	WOOD				Distinct	109			0/1	
2 Di A 330 1380, Jaquess. 1.0h DECK MOOD S MOOD 0 E11 A 280 ISS0, PIEGHU 20.0h DECK MOOD S MOOD 12 2A 380 ISS0, PIEGHU 20.0h DECK MOOD S MOOD 12 2H M 6.0 ISS0, PIEGHU 20.0h THEO MOOD S MOOD			А	28.0	1844.0	AQUED	1000.0	1.0	N	THRO	IRON	SHORT	S	SUSPEN]	issing: 0 (0%)		Districta	100		Ouidne: 109 (100	70)	_
0 E11 A 280 BS1.0 FIGHUM 1000.0 2.0 N TFR0 WOOD MOOD S WOOD S 1 2 2 1 <td< td=""><td>3</td><td>E9</td><td>М</td><td>3.0</td><td>1846.0</td><td>HIGHW</td><td>1500.0</td><td>2.0</td><td>N</td><td>THRO</td><td>IRON</td><td>SHORT</td><td>S</td><td>SUSPEN</td><td></td><td>). Label</td><td></td><td></td><td></td><td>Count</td><td></td><td></td><td></td></td<>	3	E9	М	3.0	1846.0	HIGHW	1500.0	2.0	N	THRO	IRON	SHORT	S	SUSPEN). Label				Count			
01 E11 A 290 1851.0HGPW 1000.0 20/N THRO WOOD 5 WOOD 12 E14 M 6.0 1856.0HGPW 20/N THRO WOOD 5 WOOD 3 E13 A 330 1355.0HGPW 20/N THRO WOOD 5 WOOD 5 1 - - - - - 4 E5 1 -)	E10	A	39.0	1848.0	AQUED		1.0	N	DECK	WOOD		S	WOOD		1 E1				1			
11 E12 A 39.0 183.0 RR 2.0 N PECK MOOD 5 MOOD 13 E13 A 33.0 1956.0 HGMW 2.0 N THRO MOOD S MOOD 14 E15 A 23.0 1956.0 HGMW 2.0 N THRO MOOD S MOOD 5 6 1 5 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1			A				1000.0													-			
12 E14 M 6.0 1356.0HGPW 120.0 2.0 N THRO WOOD S WOOD 14 E15 A 28.0 1857.0FR 2.0 N THRO WOOD S WOOD 15 E16 A 28.0 1857.0FR 2.0 N THRO WOOD S WOOD 15 E16 A 28.0 1857.0FR 2.0 N THRO WOOD S WOOD 15 E16 A 28.0 1864.0FR 120.0 2.0 N THRO WOOD S MOOD 17 E18 A 28.0 166.0FR 1	_												-							1			
13 E13 A 33.0 135.0-MIG/W 2.0 N THRO WOOD S WOOD 14 E15 A 28.0 1357.0-R 2.0 N THRO WOOD S WOOD 15 E16 A 28.0 1357.0-R 2.0 N THRO WOOD S WOOD 16 E17 M 40 1353.0-R 1200.0 2.0 N THRO WOOD MODD S MOOD 15 E16 A 28.0 1366.0-HIG/W 1000.0 2.0 N THRO WOOD MEDUM S/MP 1							1200.0													1			
44 E15 A 28.0 1857.0PR 2.0 PHRC WOOD S WOOD 15 E16 A 25.0 1859.0/HGHW 100.0 2.0 PHRC WOOD S WOOD 17 E18 A 28.0 1864.0/R8 120.0 2.0 PHRC RON MEDUM S PHRC			A										-							1			
15 E16 A 25.0 1839.0HG/W 103.0.0 2.0/N THRO RON MEDULM S JUPE 16 E17 M 4.0 1863.0RR 1000.0 2.0/N THRO RON MEDULM S JUPE 18 E19 A 280.0 B66.0/HG/W 1000.0 2.0/N THRO RON MEDULM S JUPE 19 E20 A 32.0 1870.0/HG/W 1000.0 2.0/N THRO WOOD MEDULM S WOOD 19 E21 M 1.0 1870.0/HG/W 120.0 THRO SIPE SIPE 100 11 1 </td <td>_</td> <td></td> <td>~</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	_		~																	-			
16 E17 M 4.0 165.0.PR 100.0 2.0 N THRO IRON SUPL 7 E18 A 28.0 1864.0.RR 1200.0 2.0 N THRO IRON SUPL 19 E20 A 32.0 1870.0.HiGHW 1000.0 2.0 N THRO IRON SWOOD 19 E20 A 32.0 1870.0.HiGHW 1000.0 2.0 N THRO IRON SWOOD 20 E21 M 1.6.0 1874.0.BR 2.0 THRO IRON SIPL I 1			^										S-F										
17 E18 A 28.0 1684.0 RR 1200.0 2.0 N THRO IRON S INPL 18 E19 A 28.0 1866.0 H1GHW 1000.0 2.0 N THRO IRON MOOD MEDIUM S WOOD 20 E21 M 16.0 1874.0 RR 2.0 THRO IRON S WOOD 20 E21 M 16.0 1874.0 RR 2.0 THRO IRON S WOOD 21 E23 M 1.0 1976.0 H1GHW 1200.0 4.0 G S THRO IRON S WOOD 22 E24 O 45.0 H37.0 RR 2.0 G S THEL S MPL 1 22 E24 O 45.0 H37.0 RR 2.0 G S THEL S MPL V V 24 E25 M 10.0 1882.0 RR 2.0 G S THEL S MPL V V V Video OK Cancel V V V V V														_									
18 E19 A 29.0 1866.0/HGHW 100.0 2.0 THRC WOOD WOOD 10 E11 1 </td <td></td> <td>-</td> <td></td> <td></td> <td></td>																				-			
20 E21 M 16.0 1874.0 RR 2.0 THRO JRON ISIMPL 21 E23 M 1.0 1876.0 HIGHW 1245.0 THRO STEEL LONG F SUSPEN 22 E24 A 240 1876.0 HIGHW 1200.0 4.0 G THRO STEEL SUMPL 131E13 1 23 E24 O 45.0 1878.0 RR 2.0 G STEEL SUMPL s: Type (Nom) v Vsualze. 24 E25 M 10.0 1882.0 RR 2.0 G STEEL SUMPL v vsualze. Undo OK Cancel													-			10 E11				1			
21 E23 M 1.0 1876.0 HIGHW 1245.0 THRO STEEL LONG F SUSPEN 22 E24 A 24,0 1876.0 HIGHW 1200.0 4.0 G THRO WOOD SHORT S WOOD 23 E24 O 45.0 1878.0 RR 2.0 G STEEL SIMPL v V Valake r. 24 E25 M 10.0 1882.0 RR 2.0 G STEEL SIMPL v V Valake r. Undo OK Cancel							1000.0					MEDIUM	S			11 E12				1			
22 E22 A 240 1876.0 HIGHW 1200.0 4.0 G THRO WOOD SHORT S WOOD 23 E24 O 45.0 1878.0 R 2.0 G STEEL SIMPL s: Type (Nom) v Woulter. 24 E25 M 10.0 1882.0 RR 2.0 G STEEL SIMPL v Undo OK Cancel Cancel State <								2.0						_		12 E14				1			
22 E22 A 240 1876.0 HIGHW 1200.0 40/G THRO WOOD SHORT S WOOD 23 E24 0 450.0 1878.0 RR 2.0 G STEEL SIMPL s: Type (Nom) Visualize . 24 E25 M 10.0 1882.0 RR 2.0 G STEEL SIMPL v Visualize . Undo OK Cancel Cancel Simple v Visualize .													F							1			
24 E25 M 10.0 1882.0 RR 2.0 G STEEL SIDPL Undo OK Cancel							1200.0					SHORT	S										
			-													s: Type (Nom)						✓ V	isualize Al
	24	E25	М	10.0	1882.0	RR		2.0	G		STEEL			SIMPL	×								
							R	emove				Undo	OK	Car	cel								1111111
	Ж																					Log	Ċ

Fig.1 Weka Database Viewer and front panel

4. **IMPLEMENTATION STEPS**

Since Apriori algorithm works with only nominal data, the data set is preprocessed. Save the intermediate files after each step. The preprocessing WEKA is shown in Fig.2 and Fig.3. The Fig.4 represents the pure data after preprocessing.

The following preprocessing methods are applied:

• Removing the attribute:

- Remove the attribute id, since it uniquely identifies the tuples. It is done by selecting the remove attribute filter.
- Remove the attribute location, since it does not play a vital role in generating the rules.

eprocess Classify Cluster Associate	Select attributes Visualize						
Open file	Open URL	Open DB	Gene	rate	Undo	Edit	Save
iter							
Choose Remove -R 1							Apply
Jurrent relation	0	weka.gui.GenericObjectEditor		× ted attribute			
Relation: bridges Instances: 108	weka.filters.unsupervise About	d.attribute.Remove		ame: ID sing: 0 (0%)	Distinc	:: 108 U	Type: Nominal Jnique: 108 (100%)
ittributes	-	a range of attributes from the dataset	Mara	Label		Count	
All	A litter that removes	s a range of attributes from the dataset.	More	1 E1		1	
<u>^</u>			Capabilities	2 E2		1	
No. Name				3 E3		1	
1 🗸 ID	attributeIndices 1			- 5 E6		1	
2 River	invertSelection Fals	3		v 6 E7		1	
3 Location		•		7 E8		1	
4 Erected 5 Purpose	Open	Save OK	Cancel	8 E9		1	
6 Length				9 E10		1	
7 Lanes				10 E11 11 E12		1	
8 Clear-G				11 E12 12 E14		1	
9 T-OR-D				13 E13		1	
10 Material							
11 Span				Class: Type (Nom)			✓ Visualize /
12 Rel-L 13 Type							
	Remove						

Preprocess Classify Cluster Associate Select	attributer Vieualize		Weka	Explo	orer				-	ð X
Open file	Open URL	Open DB	Gene	rate		Undo		Edit	Save	
Filter										
Choose Remove -R 2 Current relation		veka.gui.GenericObjectEditor		X	ted attribute					Apply
Relation: bridges-weka.filters.unsupervised.a Instances: 108	weka.filters.unsupervised. About	attribute.Remove			ame: Location sing: 1 (1%)	Dis	tinct: 54	Ty Unic	/pe: Numeric que: 21 (19%)	
Attributes		range of attributes from the dataset.	More		stic rum			Value 1		
Al			Capabilities		num			52 25.979		
No. Name 1 River	attributeIndices 2				ev			13.666		
2 ✓ Location 3 Erected	invertSelection False			۷						
4 Purpose 5 Length	Open	Save OK	Cancel							
6 Lanes 7 Clear-G					1					
8 T-OR-D 9 Material 10 Span										
11 Rel-L 12 Type				Class	: Type (Nom)				¥	Visualize All
							32			
				22				25		
						14			14	
	Remove									
	Numeric .			1				26.5		
Status OK									Log	100

Fig.3 Unwanted attribute removing in Preprocessing Weka

5

Discretization: Association rule mining can be applied on categorical data, so the three numeric attributes erected, length and lanes in the data set are discretized and it shown in Fig.5. The Fig.6 represents the how to modify the normalized value for discretization.

0			Weka Exp	olorer			- 0 ×
Preprocess Classify Cluster Associate Select	t attributes Visualize						
Open file	Open URL	Open DB	Generat		Undo	Edit	Save
Filter							
Choose Discretize -B 4 -M -1.0 -R 5	·	10.1011.001	>				Apply
Current relation		ui.GenericObjectEditor		ted attribute			
Relation: bridges-weka.filters.unsupervised.a Instances: 108	weka.filters.unsupervised.attribute. About	Discretize		ame: Lanes sing: 16 (15%	6) Dis	tinct: 4 U	Type: Numeric nique: 0 (0%)
Attributes	An instance filter that discretiz	es a range of numeric	More	stic		Value	
All	attributes in the dataset into n		Capabilities	num		1	
			Capabilities	mum		6	
No. Name				ev		2.63	
1 River	attributeIndi	ies 5		-			
2 Erected 3 Purpose	b	ins 4					
4 Length	de tradition de la companya de la co						
5 🗸 Lanes	desiredWeightOfInstancesPerInter	Vai -1.0					
6 Clear-G	findNumE	ins False	v				
7 T-OR-D 8 Material	ionoraCl	iss False					
9 Span	giorea	1050	٧				
10 Rel-L	invertSelect	on False	v				
11 Туре	makeRin	ary False	v	Type (Nom)			✓ Visualize All
			•				
	useEqualFrequer	rcy False	v		61		
	0	24	Court	1			
	Open Save	OK	Cancel				
						23	
							4
	Remove		9		0	0	4
			1			3.5	
Status OK							Log 🐠 x

Fig.5 Discretization in Bridge datasets

The input file with the above changes is shown below Fig.6.

4						Viewe	r					X		Weka	Explore	er					-	. 🛛 🛛
Relati	on: bridge	es.data.ve	rsion2-wel	ka.filters.i	unsupervi	sed.attribu	ute.Remov	ve-R1-we	ka.filters.un	supervisi	ed.attribui	te.Re										
No.	River		Purpose			Clear-G				Rel-L	Туре		Ŀ									
	Nominal				Nominal	Nominal	Nominal		Nominal		Nominal			Ger	ierate			Undo		Edit	Save	
	М		HIGHW		2		THRO		SHORT		WOOD	٨										
	A		HIGHW		2		THRO		SHORT		WOOD		E									
			AQUED		1						WOOD		ι.									Apply
			HIGHW						SHORT		WOOD		E		Calacta	d attribu	ha					
	М		HIGHW				THRO				WOOD			ve-R2		e: River	lC				Type: Nominal	
	A		HIGHW				THRO		MEDIUM		WOOD			NCT12		ng: 0 (0%	3	Dis	tinct: 4		nique: 0 (0%)	
	A		AQUED				THRO		SHORT		SUSPEN		Ŀ		_	.g. e (e /	·/					
	М		HIGHW	MEDIUM	2		THRO		SHORT		SUSPEN		E		No.	Lat	e			Count		
9	A		AQUED		1			WOOD			WOOD		Ŀ			1 M				41		
10	A		HIGHW		_			WOOD	MEDIUM		WOOD		P			2 A				49		
<u> </u>	A	CRAFTS			2			WOOD			WOOD		E		1	30				15		
	М		HIGHW				THRO	WOOD	MEDIUM		WOOD		L			4 Y				3		
_			HIGHW		2		THRO	WOOD		S	WOOD											
	A	CRAFTS			2		THRO				WOOD		E									
	A		HIGHW				THRO		MEDIUM		SUSPEN		E									
<u> </u>	М	CRAFTS		MEDIUM			THRO		MEDIUM		SIMPL		L									
<u> </u>		CRAFTS		MEDIUM			THRO		SHORT		SIMPL		E									
<u> </u>	A		HIGHW				THRO		MEDIUM		WOOD		E									
			HIGHW		_		THRO		MEDIUM		WOOD		E									
		EMER			2		THRO				SIMPL		E									
_			HIGHW				THRO		LONG		SUSPEN		Г									
			HIGHW	MEDIUM			THRO		SHORT		WOOD			Г								
		EMER			_	G		STEEL			SIMPL		E		Class: T	ype (Nor)				v	Visualize All
24	М	EMER	RR		2	G		STEEL			SIMPL	V	ſ		1						jL	
									Undo	OK	Car	ncel						49				
															41							
							Remove													15	3	
Stati OK	S																				Log	

8

Fig.6 After Discretization on Bridge datasets

The following Fig.7 depict the labels assigned for the attributes and the changes in the instances (one instance highlighted):

Fig.7 Labels assigned for the attributes and the changes in the instances

Apriori Algorithm Implementation in Weka:

The preprocessed data file is used for Association rule mining (Apriori Algorithm) and the following rules are generated by setting the necessary measures such as support and confidence is shown in Fig.8 and Fig.9.

Fig.8 Apriori Algorithm Implementation in Weka

Minimum Support and Confidence threshold:

The following Fig.9 shows the parameters set

0			Weka Explorer	- Ō X
Preprocess Clas	ssify Cluster Associate	Select attributes Visualize		
Associator				
Choose	0	weka.gui.GenericObjectEditor		
Start	weka.associations.Apriori			
Result list (righ	About Class implementin <u>o</u>	g an Apriori-type algorithm. More Capabilities		
	car	False v		
	dassIndex	-1		
	delta	0.05		
	lowerBoundMinSupport	0.5		
	metricType	Confidence v		
	minMetric	0.9		
	numRules	10		
	outputItemSets	False v		
	removeAllMissingCols	False v		
	significanceLevel	-1.0		
	upperBoundMinSupport			
	verbose	False v		
	Open	Save OK Cancel		
Status OK			Log	*** ×0

Output-Rules Generated:

The screen shot shows the rules generated by applying Apriori Algorithm for association rule mining is shown in Fig.10.

Fig.10. Output rule generated

= Run information = == Scheme: weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.5 -S -1.0 -c -1 Relation: bridges.data.version2-weka.filters.unsupervised.attribute.Remove-R1weka.filters.unsupervised.attribute.Remove-R2 Instances: 108 Attributes: 11 River Erected Purpose Length Lanes Clear-G T-OR-D Material Span Rel-L Type

=== Associator model (full training set) ===

Apriori

Minimum support: 0.5 (54 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 10 Generated sets of large itemsets: Size of set of large itemsets L(1): 7 Size of set of large itemsets L(2): 6 Size of set of large itemsets L(3): 1

Best rules found:

1. T-OR-D=THROUGH Material=STEEL $62 \Longrightarrow$ Clear-G=G $60 \mod(0.97)$

2. Rel-L=F 58 ==> Clear-G=G 54 conf:(0.93)

3. Material=STEEL 79 ==> Clear-G=G 72 conf:(0.91)

4. Clear-G=G T-OR-D=THROUGH 66 ==> Material=STEEL 60 conf:(0.91)

5. Clear-G=G 80 ==> Material=STEEL 72 conf:(0.9)

5. CONCLUSION AND FUTURE DIRECTION

The above rules infer that Most of the THROUGH bridges are constructed using the Material STEEL. If Bridges built on Clear Ground and are THROUGH bridges then the Material used to build such bridges is STEEL.

References

- 1. Donn Morrison, Ruili Wang, Liyanage C. De Silva, Ensemble methods for spoken emotion recognition in call-centres, Speech Communication, Elsevier, Vol. 49, pp.98-112, 2007
- 2. Amira A. El Tayeb, Vikas Pareek, Abdelaziz Araar, Applying Association Rules Mining Algorithms for Traffic Accidents in Dubai, International Journal of Soft Computing and Engineering, Vol. 5, No.4, pp. 1-12, 2015
- Roghayeh Saneifar and Mohammad Saniee Abadeh, Jan Zizka et al., Association Rule Discovery for Student Performance Prediction Using Metaheuristic Algorithms, pp. 115–123, 2015, DOI: 10.5121/csit.2015.51510
- 4. Amit Dipchandji Kasliwal, Dr. Girish S. Katkar, "Web Usage mining for Predicting User Access Behaviour", International Journal of Computer Science and Information Technologies, Vol.6, No.1, pp-201-204, 2015.
- 5. Rahul Neve 1, K.P Adhiya ", Comparative Study of Web Mining Algorithms for Web Page Prediction in Recommendation System", international Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, No.1, pp.969-976, 2013
- Dhruva Mistry, Kirti Sharma, Samip A.Patel, Recommend Websites through Weblog Files using Association Rule, International Journal of Computer Applications, Vol.126, No.2, pp.16-19, 2015

Author(s) Biography

Thangamani completed her B.E., from Government College of Technology, Coimbatore, India. She completed her M.E in Computer Science and Engineering from Anna University and PhD in Information and Communication Engineering from the renowned Anna University, Chennai, India in the year 2013. **Dr. M. Thangamani** possesses nearly 23 years of experience

in research, teaching, consulting and practical application development to solve real-world business problems using analytics. Her research expertise covers Medical data mining, machine learning, cloud

computing, big data, fuzzy, soft computing, ontology development, web services and open source software. She has published nearly 70 articles in refereed and indexed journals, books and book chapters and presented over 67 papers in national and international conferences in above field. She has delivered more than 60 Guest Lectures in reputed engineering colleges and reputed industries on various topics. She has got best paper awards from various education related social activities in India and Abroad. She has organized many self-supporting and government sponsored national conference and Workshop in the field of data mining, big data and cloud computing. She continues to actively serve the academic and research communities and presently guiding Ph.D Scholars under Anna University. She is also seasonal reviewer in IEEE Transaction on Fuzzy System, international journal of advances in Fuzzy System and Applied mathematics and information journals. She has organizing chair and keynote speaker in international conferences in India and countries like California, Dubai, Malaysia, Singapore, Thailand and China. She has received many awards for academic activities. She is on the editorial board and reviewing committee of leading research journals, which includes her nomination as the Editor in chief to International Scientific Global journal for Engineering, Science and Applied Research (ISGJESAR) & International Research Journal in Global Engineering and Sciences (IRJGES) and on the program committee of top international data mining and soft computing conferences in various countries. She has Life Membership in ISTE, Member in CSI, International Association of Engineers and Computer Scientists in China, IAENG, IRES, Athens Institute for Education and Research and Life member in Analytical Society of India. She is currently working as Assistant Professor at Kongu Engineering College at Perundurai, Erode District.

Mrs. V. Prasanna completed her Master's degree in Software Engineering from Anna University of Technology, Coimbatore, Tamil Nadu, India. Currently, she is full time research scholar in Kongu Engineering College under the Anna University, Chennai. She has nearly 7 years of academic experience and one year industry experience. She has presented papers in four National and International conferences. She has published

5 papers in reputed international journals. Her research interests include Data Mining, Image retrieval, Big data and Cloud Computing.