
 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

Restructuring Distributed Object-Oriented Software using NeuralNetworks 

S Saravanan Professor, Department of CSE, Agni College of Technology, Chennai, India 

Gopinathan S, Assistant Professor, Department of CSE, Agni College of Technology, Chennai, 

India 

Abstract 

For the distributed software systems evolvement, ObjectOriented (OO) approach is employed 

by engineers with designers in the precedent era which results in Distributed Object Oriented 

(DOO) systems. The chief facet of DOO systems stands as the competent dispersion of software 

classes amongst diverse nodes. The primary design of DOO applications has no top-class 

distribution, hence restructuring has to be done. The DOO software restructuring is done via a 

proposed adaptive technique called Neural Network (NN), to intensify the performance further. 

Initially, Class Dependency Graph (CDG) is constructed, in which the nodes represent the 

classes, and also the connections betwixt the nodes represent the dependencies betwixt the 

classes. Now, the factors of objects, methods, variables, lines, and import linked with the 

classes in the CDG are extracted and given as inputs to the NN for the training process. Now, 

clustering of the trained features is done by which the OO system is segmented into subsystems 

with low coupling using Class Dependency Based Clustering (CDBC) technique. Now, the 

clustered classes are accumulated into cluster graphs using K-Medoid clustering technique and 

finally, the mapping is done with the created partitions to the fixedavailablemachines using 

Recursive K Means clustering in the targeted distributed architecture. Simulation outcomes 

exposed that the proposed work yields enhanced outcomes in an effectual way compared to the 

existingtechniques. 

 

 
Keywords: Distributed Object Oriented systems, Class Dependency Graph, Recursive Graph 

Clustering, Low Coupling, Neural Network and DistributedArchitecture. 

 

1. Introduction 
 

With the developments in the technology, software applications delivered an immense ease 

intended for economic augmentation besides scientific advancement. In the interim, the losses 

on account of the malfunction of software are rising. The enhancement of the software 

product’s quality becomes an urgent issue aimed at the software engineers [1]. By utilizing the 

software source code which includes integration level, unit level along with system level, 

Structural quality is examined. The union of structural along with functional quality expands 

the complete software quality. Software quality contributes a noteworthy part in the expansion 

of the software [2]. The constant growth of complexity, criticality, and pervasiveness in 

software systems forge software quality more significant in software developments. 

Nevertheless, to make certain a system with no faults, it required to be profoundly tested, but in 

mass of the instance testing is unfeasible. Consequently, development teams are created to 

concentrate on their testing attempt on software system [3]. With the evolution of the software 

on its swiftness, the system design experienced limitless changes, features get removed 

integrating current situation, and consequently the quality of software characteristic as well 

experience a sequence of limitless changes[4]. 

Software design along with the quality is often times become casualty of restricted budgetary. 

The top-notch languages, C#, Java can’t swap the requirement for a straightforward modular 

design [8]. Normally, restructuring techniques support the source code to redeem 

itsqualitysubsequenttoitsmaintenanceoperations,occasionallyevenprior to the product’s initial 

release, manufacturing its elements clearer, and more reusable beside more cohesive [5]. 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

Refactoring mentions to the restructuring of software. A change developed in software to 

enhance its interior quality without varying its peripheral behavior is called refactoring. 

Enhancing the non-functional features of the code, say, modularity, understandability with 

flexibleness is referred as its key objective [6]. Refactoring together with maintenance are 2 

dissimilar processes; the segment of refactoring chiefly relate to the tenability of the already 

present software. Refactoring stands diverse in that the maintenance together with advancement 

that straightforwardly modifies the actions of the software, correspondingly, to spot and clear a 

bug or affix or else ameliorates functionality [7]. Therefore, Software refactoring enhances the 

software’s interior quality devoid of affecting its peripheral behavior. Consequently, it stands as 

an effectual and comparatively safe mode to ameliorate the software quality[9]. 

 

The software system advancement stands as a time expending continuous process. Software 

system typically undergoes a succession of little and large changes over an extent [10]. To find 

the enhanced solutions aimed at software engineering processes andsoftware products, 

considerable software development paradigms was presented. Amongst these examples, for 

numerous years OO software development is obtaining fame [11]. In OO, a program is 

systematized as established interacting objects; every one encompasses its individual private 

state instead of the established functions which share a global state. Ideas of dynamic binding, 

encapsulation, inheritance, along with polymorphism form the OO paradigm’s base. The 

objects were distributed and then executed either in parallel or in sequential as the additional 

facet of OO application[12]. 

 

A revolutionary software paradigm termed Object-oriented programming (OOP) stands as the 

existent meta-model developed by classes together with objects utilizing theories of abstraction, 

inheritance, polymorphism et cetera Those theories assist the establishment of reusable and also 

maintainable programming modules [13]. Aimed at the progression of distributed system of 

software, OO approach is engaged by engineers with designers in the precedent era for 

resolving complex issues in numerous scientific areas. A major phase in modeling DOO 

methodology is to settle on thelocations ofobject. This phase lessens the communication 

requirement in unreachable locations [14]. This DOO application is generated utilizing 

numerous sorts of software platforms which convey portability, communication, with 

interoperability. The technologies explicit to these platforms work as an imperative segment of 

the system implementation subsequent to system design, impacting the architecture and also 

functionality [15]. The primary draft of the DOO application doesn’t certainly possess the top 

notch distribution. In these issues, the solution is attained via 2 configurations: either the 

hardware is reconfigured to peer with the software components (hardware reconfiguration), 

otherwise the software is reconfigured to peer with the accessible hardware (software 

restructuring) [14]. 

 

The draft arrangement of the paper is systematized as: 

 

Section 2 surveys the associated works regarding the proposed method, 

Section 3 briefly discusses the proposed technique; Section 4 estimates the investigational 

result Section 5 deduces this paper. 

2.Literature Survey 
 
Gu et.al [16] suggested cohesion based on complex networks (CBCN) metric, developed principally 

grounded upon calculating class average clustering (CAC) coefficient through graphs demonstrating 

connectivity motif of the several class members. Additionally, the CBCN metric was evaluated with 

theoretical justification bestowing with 4 possessions (cohesive modules, non- negativity along with 

normalization, monotonicity, maximum and null values) of class cohesion metric (CCM). The CBCN 

metric grounded upon data comparison with prevailing seventeen typical CCM of class cohesion system 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

seemed supreme to all others. Application of CBCN metric to 3 open source software (OSS) to compute 

CAC coefficients, the outcome depicted that class required modification, understanding, and 

maintenance in an OSS system was less challenging compared with others. Three OSS systems had 

power-law dispersions for the CAC coefficient, which made probable of further comprehension of the 

CBCN. 

 

Ajienkaet.al [17] intended to associate the efficacy of gauging semantic coupling (SC) of OO software 

classes utilizing 1) modest identifier centered methods 2) the corpora of the complete classes in a 

software system. Subsequently, they investigated the interaction betwixt SC and change coupling (CC). 

On the relations betwixt logical and semantic dependencies, in 79 OO and OSS projects, there was not 

any linear relation betwixt the logical and semantic dependencies in relation to strength. Yet, they 

recognized a bilateral relation betwixt semantic to logical dependencies. Therefore, over seventy 

percentages of classes which were semantically associated will regularly co-evolve as well as classes 

which were changed associated would regularly share some degree of SC. The outcomes exposed that: 

(a) Identifier- centered techniques contained more computational competence except can’t constantly 

use interchanging with corpora-based techniques of calculating SC classes (b) there was not any 

relationship betwixt SC and CC. Furthermore, they discovered that (c) there stands direct relations 

betwixt them, as above seventy percent of the semantic dependencies were as well connected via CC 

whereas not reversely possible. More comparison result was needed. 

 

Kumar et.al [18] recommended a generic concept of OO framework multiple attribute quality method 

which scientifically regarded as quality features besides its sub-features based on diverse views and also 

the practice of Web applications. The key perception of this recommended framework was to inspect 

and enlarge the formerly established quality features in Web- centered applications. This method was 

selected for the impulsive and diverse nature of the Web applications. For manipulating this framework, 

International Organization for Standardization (ISO) and the International Electro technical Commission 

(IEC) 9126 framework was utilized as a locus. In this generic type method, the conventional software 

along with Web-based application’s quality was accessed utilizing the similar framework. The 

hierarchical nature of aspects disturbing diverse perspectives was certainly added, modified or deleted 

as per requisite and Web application. Augmenting the depth and perspectives of hierarchy (by 

combining parameters of quality to features, sub-features, metrics, and sub-metrics) further improved 

the quality factor accuracy of this recommended framework. The model therefore resultant was 

malleable sufficient to compact with the entire software applications along with 

fundamentaltechnologies. 

 

Chhabra and Parashar [19] presented unpredictable measures intended for classes specifically, Class 

Change-Impact Set and Change-Coupling (CC) Index. For these measures initially, the set of change 

committed was extracted to mine the CC amongst the classes, in addition, unpredictable measures of 

classes were calculated. The suggested changeability prediction frameworksupported the developer in 

numerous way, say, forecast of the degree of CC of a class; the architecture was validated via 

contrasting both CC and designed amongst classes together with correct planning of maintenance tasks 

via comprehending the apparent effect of class changes by change impact set. The measures proposed 

were empirically confirmed and specific research inquiries were replied to confirm the practicality of 

the change-stream. The acquired outcomes were consistent and indicated that suggested change-data 

stream centered changeability forecast was utmost helpful aimed at the software systems maintenance. 

Further specific research queries were responded to confirm the dependability of changeability 

measures. As of these, change data streams registered as change-history of classes were engaged to 

discover change-coupling in addition helped to envisage the forthcoming changeability configuration 

was perceived. 

 

Nucciet.al [20] scrutinized the software elements changed through centered developers should as well 

with no inclination to error considering segments reformed by fewer absorb developers. That paper 

made an additional advance, by investigating the work undertaken by the developer’s dispersion of bug 

prediction. specifically, they characterized 2 events i) by considering the quantity of code segments as 

structural scattering (the developer reforms segments depending on their structural spreading) ii) by 

regarding the obligations that was performed as semantic scattering. The characterized events were 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

evaluated as bug forecasters in an experiential scrutiny done on twenty-six open source frameworks. 

The achieved outcomes established the depth of their model and also its advanced complementarities 

concerning the modest methods. They as well generate and also experiment a hybridized prediction 

model over the 11 forecasters conquered by the 5 competitive methods. The accomplished results 

established that (a) the hybridized model accomplished an enhanced accuracy as for each single isolated 

five models; 

(b) the forecasters recommended playing a notable segment in the finest performing hybridized 

prediction models. 

 

Aslam and Ijaz [21] recommended a methodology called task allocation. It encompasses 2 phases: 

Phase 1 finds the dependencies and aspects which impacted the decision of task allocation; Phase 2 

suggests a measureable technique which consigns tasks for the respective best team members. Task 

requisites were uttered as capabilities, catering intended for diversified aspects for instance technical, 

personal in addition to environment. One vital decision was allotting tasks to the associates of the team. 

That decision was undertaken qualitatively and not in a deterministic means, therefore involved hazards 

stayed aimed at successive future projects. This method considered the capability necessities aimed at 

every role requisite to apply in the project. Aimed at every single role, there were choices of the finest 

team membergrounded on the precedent working experience length, precedent appraisal intended for 

completing similar tasks and also relative prominence of capability necessities. Their method reside 

obvious to the targeted goals in contrast with the best match. Other targets are presenting quality along 

with price expediently; addressing numerous goals. Such targets likewise permitted quality assessment 

of task-member assignment amid furthermore subsequent to the project conclusion, which results in 

diminishing related risks. 

 
 

2. Restructuring DOO Software Using NeuralNetwork 
 

OO techniques form applications extensively simple to construct by contributing an advanced 

platform for application development. Grounded in the DOO approaches there are numerous 

projects to elucidate intricate problems in diverse scientific areas. The utmost central aspect of 

DOO systems stands as the well-organized distribution of software classes amongst diverse 

nodes to resolve the mismatch issue which may happen once the structure of software doesn’t 

suit the prevailing hardware organization. The DOO software restructuring is done by via a 

proposed adaptive technique called NN, to intensify the performance further. This technique 

declines the aggregate of clusters which is initiated by the NN training and thus declining the 

aggregate of resources allocated. Initially, CDG is constructed, in which the nodes signify 

classes and also the connections betwixt the nodes represent the dependencies betwixt the 

classes. Now, the factors of objects, methods, variables, lines, and import linked with the 

classes in the CDG are extracted and given as inputs to the NN for the training process. Now, 

clustering is done by which the OO system is segmented into subsystems with low coupling 

using Class Dependency Based Clustering (CDBC) technique. Now, the clustered classes are 

accumulated into cluster graphs using K-Medoid clustering technique and finally, the mapping 

is done with the created partitions to the fixed available machines using Recursive K Means 

clustering in the targeted distributed architecture. The proposed methodology's framework is 

clarified inFig.1. 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

 

Fig1.The Proposed Methodology 

 
 

Class DependencyGraph 

Initially, every single class is allotted to a distinct node of the distributed system to precisely 

assess the communication events amongst classes in a DOO system. The intended values are 

utilized to construct the Class Dependency Graph (CDG) of the OO system. The CDG is 

validated in Figure2. 
 

Fig2. Class Dependency Graph 

 

In CDG, the vertex is denoted class and also an edge betwixt class A and B denotes a 

communication event which occurs betwixt these two classes on data transfer or classes’ 

dependency. The weight of the edgeWAB denotes the cost of the communication events betwixt 

class A and class B. when no relationship dependency or data communication betwixt two 

classes exist, no edge will join them in the CDG. 

FeatureExtraction 

After the construction of CDG, features of objects, variables, methods, import and lines 

accompanied by the classes in the CDG are extracted. 

 

• Object 

 

Object stands as a central unit of OOP and signifies the tangible entities. A distinctive Java 

program builds many objects, which interrelate by appealing methods. An object entails 

behavior, state, and identity. 

 

• Variables 

In OOP with classes, Regardless of the existence of numerous class instances, in a class, a class 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

variable is defined with a single copy and is never an instance variable. It stands as a distinct 

form ofclass attribute (or field, or else class property, datamember). 

 

• Method 

A procedure which is accompanied by an object and a message is labeled as a method in OOP. 

It is a programming module that comprises sequences of statements which execute a task. 

Methods also convey the interface which other classes utilize to modify and access an object’s 

dataproperties. 

 

• Import 

Import files are utilized to pass user-defined and also built-in packages into the java source file 

in order that the individual class can pertain to a class of another package by directly using 

itsname. 

• Lines 

Lines indicate the total lines written in a program which includes both the used and unused 

lines. 

NeuralNetwork 

In the previous step, the extracted features are delivered as inputs to the NN for the training 

process. In NN, the weights are consecutively adjusted dependent on input sets and the 

equivalent set of anticipated output targets. The synaptic weight adaptation consistently 

changing its value until it attains the anticipated behavior. Every single iteration produces two 

sweeps, specifically, forward stimulation to attain a solution, in addition, a backward 

dissemination of the errors calculated to transform the weights. The forward with backward 

sweeps are executed frequently until the NN solution approves with the preferred value within 

a previously stated tolerance. The NN structure is exposed in Figure 3.Back propagation 

algorithm is employed in the NN training, which is designated in the subsequent steps. 

 

Step 1: Build random weights in [0, 1] interval and consign it to the output and also hidden 

layer neurons. Sustain a unison value weight for all input layer neurons. 

 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

out 2 

2 2 2 2 2 

=w 

 

 

Fig3. Structure of NN 

 

 
Step 2: the classifier assigns itself training dataset G as input, the evaluation of BP error is 

BPerr =Ztar −Zout 
(1) 

 

In Eq. (1), Ztar is the target output in addition 

to 

Zout is the network 

output that is determined 

asZ =[Z
(1)

 Z 
(2) 

Z 
( N) 

] Z 
(1) 

,
 

Z 
(2)

, , Z 
( 

N) 

are the network 

outputs. The network outputs is exhibited as 
NH 

 

where, 

(l ) 

2 2r1 

r =1 

Z
1 

(

r

) 

(2) 

Z1 (r) = 
1 

1 

+exp(−

w11r 

 


Z
i

n

) 

(3) 

 

Eq. (2) and Eq. (3) signifies the activation function done in the output layer as well as hidden 

layer correspondingly. 
 

Step 3: The entire neurons weights are accustomed 

which, w is the change in weight that is evaluated as 

w =w+wto, in 

w =.X2 .BPerr 
(4)

Z 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

In Eq. (4), stands as the learning rate, commonly it extends as of 0.2 to 0.5. 

 

Step 4: the process is repeatedly done from step 2, till BP error gets curtailed to a minimum 

value.  Basically, the criterion is to be in  

BPerr 0.1. 

 

The trained features that were utilized for clustering declines the aggregate of clusters which is 

initiated by the NN training and thus declining the aggregate of resources allocated. 

 
Clustering SystemClasses 

Presently, clustering of the trained features is finished utilizing Class Dependency Based 

Clustering to segment the OO system into sub- systems with low-coupling. The Pseudo code 

for Class Dependency Based Clustering is outlined in Figure 4. 
 

Fig4. Pseudo code for Class Dependency Based Clustering 

 

From the Java programming convention, a package is a namespace which composes a group of 

related as well as comparative classes and also interfaces. Theoretically, packages are like 

distinctive folders on thecomputer.Apackageenablesadevelopertogroupclasses(aswellas 

interfaces) together. These classes will all be connected somehow that they may all need to play 

out a particular set of tasks. As the objective is to aggregate reliance classes, clustering utilizing 

CDBC, portrayed in Figure 4, can without much of a stretch meet the reason. The proposed 

CDBC algorithm groups software into multiple clusters utilizing related and comparative OO 

classes. The functionality of CDBC can be sorted as OO class identification and Cluster 

formation. 

 

OO class identification: At the start of the clustering procedure, the proposed algorithm carries 

out textual analysis in the software project to distinguish the entire OO classes. In this exact 

circumstance, the software project is constructed utilizing Java, so the textual analysis is done 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

considering the file expansion:java. 

 

Cluster formation: Subsequent to recognizing the OO classes, the CDBC discovers the group 

centered upon the Dependency Class by checking the condition if Header Class has formed the 

Object in the source code, and at that point clustering the classes rely on the dependency 

classes the source codes. Else if Header class doesn't have the object, move to next class. The 

cluster formation executes until eachclass accessible in the package was allotted to the cluster. 

 

Grouping of Clusters 

In this approach, the clusters (sub-systems) produced at the primary stage as the fundamental 

candidates intended for distribution is utilized. The method depends on consolidating clusters 

into groups in a means which maintains the communication expenses amongst them limited. 

Accordingly, a cluster graph is made, in which the nodes signify clusters and also the edges 

will catch the conceivable communication links which might exist amongst clusters. At that 

point, the K-Medoid algorithm is employed to do cluster gathering such that the amount of the 

ensuing groups is equivalent to the number of available nodes. The outcome will be the groups 

of clusters which have negligible communication expenses amongst them. Ultimately, those 

groups are allocated to the diverse available nodes in the distributed environment. 
 

K-Medoid Algorithm 

Grouping or else Clustering stands as a strategy for partitioning a group of objects into clusters 

with the end goal that the objects in the same cluster are majorly like one another than objects 

in various clusters as indicated by some characterized criteria. For the grouping of clusters, k-

Medoid clustering strategy is utilized. The medoid stands as a statistic which signifies that data 

member from a data set whose average dissimilarity to the various individuals from the group 

is negligible. Along these lines, a medoid dissimilar to mean is dependably a member from the 

dataset. It represents the most centrally located data item in the dataset. The Pseudo code for K-

Medoid clustering algorithm appears in Figure 5. 
 

Fig5. Pseudo code for K-Medoid Algorithm 

 
 

  

Mapping Classes toNodes 

In this stage, the restructuring procedure is expert by mapping the assortment of DOO 

application clusters to the distinctive network nodes to attain better performance. To 

accomplish this objective, the mapping procedure is performed by mulling over the target of 

limiting the effectof class reliance and also data communication. It is accepted that the 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

objective distributed system encompasses an assortment of homogeneous processors that are 

completely associated by means of a communication network. In the proposed strategy, the 

mapping is finished with the guide of the Recursive k-means clustering system. 

 
Recursive K-Means ClusteringAlgorithm 

A novel, iterative initialization strategy aimed at the k-means algorithm which depends on a 

succession of recursive partitions of the cluster is proposed. The goal is to approximate the k-

means solution for the complete dataset by recursively implementing a weighted form of the k-

means over a developing, yet little, the number of cluster’s representatives. The pseudo code 

for the recursive k-means clustering algorithm appears in Figure 6. 
 
 

 
Fig6. Pseudo code of Recursive K-Means Clustering 

 

 

In the initial step of the iterative system, the dataset is split into various disjoint subsets, called 

blocks that are restricted in equally sized hypercubes. Every block is then described by a 

representative furthermore its comparing weight. At last, a weighted version of Lloyd's 

algorithm is implemented over the group of representatives. Starting with one iteration after 

that onto the subsequent, a more refined partition is built by isolating each hypercube into 2d 

equally sized hypercubes. Such partition enables subsets of the past iteration to reallocate in a 

different cluster, in an attempt to decrease the overall error. This process is recurring to the 

point that a precise number of iterations are accomplished or when the approximation, in two 

back to back iterations, changes marginally. This algorithm is predominantly in view of a 

weighted variant of Lloyd's algorithm, termed weighted Lloyd's algorithm, which is connected 

over the group of representatives of a specified segment, mulling over the weight related to 

each block. At that point, the resultant clusters are mapped to the availablenodes. 

 

3. Result andDiscussion 
 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

This section evaluates the existing DOO Restructuring performance without Neural Network 

(DOOR) along with the proposed DOO Restructuring with Neural Network (DOOR_NN) with 

performance metrics of the communication expense and aggregate of clusters. In MATLAB 

software, the proposed restructuring simulator is established. The simulator encompasses a 

friendly user interface which lets the user indicate the nodes in addition to the edges in the 

systems and after that it will produce theCDG. 
 

Table 1. Simulation Results for the Proposed DOOR with Neural Network and the 

Existing technique without NN 
 

 

 
Number of 

Classes 

Number of 

Clusters 

Communication Cost 

Clustering Grouping Mapping 

DO

OR 

Propo

sedDO

OR_ 

NN 

RG

C 

Prop

ose d 

CDB

C 

K- 

Par

titi

oni

ng 

Pro

po 

sed 

K- 

Me

doi 

ds 

D

o

u

bl

e 

K 

C

lu

s 

te

ri

n 

g 

Pro

pos 

ed 

Rec

urs 

ive 

K- 

Me

ans 

51 6 4 204
5 

1916 189
9 

171
4 

1
6
8
0 

154
0 

62 7 6 263
2 

2243 216
0 

209
5 

2
1
2
4 

202
4 

79 9 7 260
0 

2415 218
5 

206
0 

2
0
9
7 

198
8 

107 11 9 319
6 

2818 300
9 

269
8 

2
4
8
3 

218
4 

153 15 13 409
0 

3825 378
4 

351
5 

3
1
4
3 

300
5 

 

Table 1 delineates the simulation results of the proposed Distributed Object-Oriented 

Restructuring with Neural Network (DOOR_NN) and the existing method without Neural 

Network (DOOR). The proposed DOOR_NN is contrasted with the existing strategy DOOR 

centered upon the number of clusters, clustering, grouping, and mapping. For clustering, the 

existing strategy utilizes Recursive Graph Clustering, although the proposed procedure utilizes 

Class Dependency Based Clustering (CDBC). For gathering, the proposed stratagem utilizes K- 

Medoid approach, while the existing procedure utilizes K-Partitioning approach. For mapping, 

the proposed stratagem utilized Recursive K- Means clustering, while the existing method 

utilized Double K Clustering approach. For any quantity of classes along with clusters, the 

proposed procedure with Neural Network demonstrates the superior performance to the 

existing system without Neural Network. 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

 

Fig7. Performance analysis of the proposed technique based on the number of clusters 

 

Figure 7 analyses the proposed DOOR_NN performance and that of the existing procedure 

DOOR centered upon the number of clusters formed amid the clustering process. It 

demonstrates the results of the simulation with four nodes. It delineates the aggregate number 

of clusters formed for the precise quantity of classes. Here, it can be unmistakably observed 

that the proposed DOOR_NN produceslessnumber of clusters than the existing strategy, which 

clarifies the greater performance of the proposed stratagem. 

 
Clustering 

Figure 8 analyses the performance of clustering for the proposed procedure Class Dependency 

Based Clustering (CDBC) and the existing method Recursive Graph Clustering (RGC) 

regarding communicationcost. 
 

Fig8. Performance analysis of Clustering in terms of Communication Cost for the existing RGC and the proposed CDBC 

 

In Figure 8, X-axis signifies the number of clusters produced and Y- axis signifies the 

communication cost in units of time which deliberate betwixt classes situated in various nodes. 

Here, for 4 clusters, the communication expense is roughly same for the RGC procedure and  

the proposed CDBC method. Be that as it may, as the amount of clusters expands, the 

communication expense additionally increments and an adequate distinction in cost is seen for 

the existing and the proposed strategies. Out of them, the proposed CDBCmethod demonstrates 

the most minimal cost as far as any number ofclusters. 

 
GroupingFigure 9 analyses the grouping performance for the proposed K-Medoid Clustering 

method and the existing system K- Partitioning Clustering strategy regarding 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

communicationcost. 
 
 

 

Fig9.Performance analysis of Grouping in terms of Communication Cost for the existing K- Partitioning and the proposed K-

Medoids 

 

 

 

For Grouping, the proposed K-Medoids clustering method is a cluster grouping approach. For 6 

and 7 quantity of clusters, the communication expense is relatively same for both the existing 

K-Partitioning and the proposed K-Medoids method. Viewing at the communication cost of 

both the procedures, the proposed K-Medoids system has the most reduced communication cost 

intended for any number of clusters. 

 
Mapping 

Figure 10 examines the performance of mapping for the proposed Recursive K-Means 

Clustering system and the existing Double K- Clustering technique regarding the 

communication expense. 
 
 

 

Fig10. Performance analysis of Mapping in terms of Communication Cost for the existing Double K Clustering and the 

proposed Recursive K-Means 

 

For Mapping, the proposed Recursive K-Means Clustering strategy is utilized. Here, the 

difference in the communication cost intended for  the proposed and the existing system is 

remarkable for 4, 6 and 7 quantity of clusters. A substantial contrast among the entire number 

of clusters is seen for 9 quantities of clusters. 

 

 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

4. Conclusion 
 

OO techniques form applications extensively simple to construct by contributing an advanced 

platform for application development. The DOO software restructuring is done by via a 

proposed adaptive technique called NN, to intensify the performance further. This technique 

declines the aggregate of clusters which is initiated by the NN training and thus declining the 

aggregate of resources allocated. The existing DOO Restructuring without Neural Network 

(DOOR) performance and that of the proposed DOO Restructuring with Neural Network 

(DOOR_NN) are evaluated with performance metrics, for instance, the number of clusters and 

communication cost. Training the features with NN greatly lessens the quantity of clusters 

generated during clustering and thus the communication cost. Simulation outcomes illustrated 

that the proposed work yields enhanced outcomes in a proficient manner compared to the 

existingtechniques. 

 

References 

 
[1] Wang J, Ai J, Yang Y, Su W Identifying key classes of object- oriented software based on 

software complex network. In System Reliability and Safety (ICSRS), 2ndInternational 

Conference on, IEEE, (2017) pp.444-449. 

[2] Tarwani S, Chug A Prioritization of code restructuring for severely affected classes under 

release time constraints. In Information Processing (IICIP), 1st India International Conference 

on, IEEE,(2016) pp.1-6. 

[3] Boucher A, Badri M Predicting Fault-Prone Classes in Object- Oriented Software: An 

Adaptation of an Unsupervised Hybrid SOM Algorithm. In Software Quality, Reliability and 

Security (QRS),IEEE International Conference on, IEEE, (2017) pp. 306- 317. 

[4] Rajdev U, Kaur A Automatic detection of bad smells from excel sheets and refactor for 

performance improvement. In Inventive Computation Technologies (ICICT), International 

Conference on, Vol. 2, IEEE, (2016) pp.1-8. 

[5] Kaya M, Fawcett JW A new cohesion metric and restructuring technique for object oriented 

paradigm. In Computer Software and Applications Conference Workshops (COMPSACW), 

IEEE 36th Annual, IEEE,(2012) pp.296-301. 

[6] Mourad B, Badri L, Hachemane O, Ouellet A Exploring the Impact of Clone Refactoring on 

Test Code Size in Object-Oriented Software. In Machine Learning and Applications (ICMLA), 

16th IEEE International Conference on, IEEE, (2017) pp.586-592. 

[7] Amirat A, Bouchouk A, Yeslem MO, GasmallahN RefactorSoftware  architecture  using   graph   

transformation   approach.  In Innovative Computing Technology (INTECH), Second 

International Conference on, IEEE, (2012) pp.117-122. 

[8] Bhatti MU, Ducasse S, Huchard M Reconsidering classes in procedural object-oriented code. In 

Reverse Engineering, WCRE'08, 15thWorking Conference on, IEEE, (2008) pp.257-266. 

[9] Liu H, Li G, Ma ZY, Shao WZ Conflict-aware schedule of software refactoring. IET software, 

(2008) 2(5):446-460. 

[10] Nongpong K Feature envy factor: A metric for automatic feature envy detection. In 

Knowledge and Smart Technology (KST), 7th International Conference on, IEEE, (2015) pp. 7-

12. 

[11] Tomyim J, PohthongA Requirements change management based on object-oriented software 

engineering with unified modeling language. In Software Engineering and Service Science 

(ICSESS), 7th IEEE International Conference on, IEEE, (2016) pp. 7-10. 

[12] Hamad, SH, Ammar, RA, Khalifa, ME, Fergany, T Randomized Algorithms for Mapping 

Clustered Object-Oriented Software onto Distributed Architectures. In Signal Processing and 

Information Technology, ISSPIT, IEEE International Symposium on,IEEE,(2018) pp.426-431. 

[13] Sugandhi R, Srivastava P, Srivastav P, Sanyasi A, Awasthi LM, Parmar V, Makadia K, Patel 

I, Shah S Implementation of object oriented software engineering on LabVIEW graphical 

design framework  for  data  acquisition  in  large  volume   plasma  device.   In Cloud 

Computing, Data Science & Engineering-Confluence, 7th International Conference on,IEEE, 



 

International Research Journal in Global Engineering and Sciences. (IRJGES) 

ISSN: 2456-172X | Vol. 4, No. 3, September - November, 2019 | Pages 60-74  
 

(2017) pp.798-803. 

[14] Faheem MT, Ammar RA, Sarhan AM, Ragab HAM A hybrid algorithm for restructuring 

distributed Object-oriented software. In Signal Processing and Information Technology 

(ISSPIT), IEEE International Symposium on, IEEE,(2010) pp. 202-208. 

[15] Cosma DC Reverse engineering object-oriented  distributed  systems. In Software 

Maintenance (ICSM), IEEE International Conference on, IEEE, (2010) pp.1-6. 

[16] Gu A, Zhou X, Li Z, Li Q, Li L Measuring Object-Oriented Class Cohesion Based on 

Complex Networks. Arabian Journal for Science and Engineering, (2017) 42(8):3551-3561. 

[17] Ajienka N, Capiluppi A, Counsell S An empirical study on the interplay between semantic 

coupling and co-change of software classes. Empirical Software Engineering, (2017)pp.1-35. 

[18] Kumar N, Dadhich R, Shastri A MAQM: a generic object-oriented framework  to  build   

quality   models   for   Web-based applications. International Journal of System Assurance 

Engineering and Management, (2017) 8(2):716-729. 

[19] Parashar A, Chhabra JK Mining software change data stream to predict changeability of 

classes  of  object-oriented  software  system. Evolving Systems, (2016) 7(2):117-128. 

[20] Nucci DD, Palomba F, Rosa GD, Bavota G, Oliveto R, Lucia AD A developer centered bug 

prediction model", IEEE Transactions on Software Engineering,(2018) 44(1):5-24. 

[21] Aslam W, Ijaz F A Quantitative Framework for Task Allocation in Distributed Agile 

Software Development, IEEE Access(2018). 


